Evaluation Methods and Measures for Causal Learning Algorithms

نویسندگان

چکیده

The convenient access to copious multifaceted data has encouraged machine learning researchers reconsider correlation-based and embrace the opportunity of causality-based learning, i.e., causal (causal learning). Recent years have, therefore, witnessed great effort in developing algorithms aiming help artificial intelligence (AI) achieve human-level intelligence. Due lack ground-truth data, one biggest challenges current research is algorithm evaluations. This largely impedes cross-pollination AI inference hinders two fields benefit from advances other. To bridge conventional (i.e., based on statistical methods) with Big Data intersection learning), this survey, we review commonly used datasets, evaluation methods, measures for using an pipeline similar learning. We focus fundamental tasks causality-aware tasks. Limitations procedures are also discussed. We, then, examine popular tools/packages conclude primary opportunities benchmarking era Data. survey seeks bring forefront urgency publicly available benchmarks consensus-building standards observational data. In doing so, hope broaden discussions facilitate collaboration advance innovation application

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measures for Performance Evaluation of Genetic Algorithms

In recent years, genetic algorithms (GAs) [1] have been widely recognized as an e ective solving technique for complex problems in the real world. GAs can be regarded as a paradigm of algorithms in the sense that the GAs are parameterized and applicable to a variety of problems by instantiating the paradigm. There are three major components to be designed in GAs. The rst one is the coding which...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Refined Homotopic Thinning Algorithms and Quality Measures for Skeletonisation Methods

Topological skeletons are shape descriptors that have been applied successfully in practical applications. However, many skeletonisation methods lack accessibility, mainly due to the need for manual parameter adjustment and the shortage of tools for comparative analysis. In this paper we address these problems. We propose two new homotopypreserving thinning algorithms: Flux-ordered adaptive thi...

متن کامل

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation

Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that consists of its direct causes and direct effects) is essential for effective intervention and can facilitate accurate diagnosis and prognosis. Recent research has provided several active learning met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE transactions on artificial intelligence

سال: 2022

ISSN: ['2691-4581']

DOI: https://doi.org/10.1109/tai.2022.3150264